If it's not what You are looking for type in the equation solver your own equation and let us solve it.
34x^2-65x+21=0
a = 34; b = -65; c = +21;
Δ = b2-4ac
Δ = -652-4·34·21
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-65)-37}{2*34}=\frac{28}{68} =7/17 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-65)+37}{2*34}=\frac{102}{68} =1+1/2 $
| -5x+3(x+3)=13 | | -14-4a=4-7a | | g(2)=4(2)+1 | | -2(x-1)+8=-16 | | 9(4x+3)=19x+9-3x=3 | | 5(5x/6)=270 | | 4-m=11m-4(4+2m) | | 6x+33=6x+15+18 | | -7/2(2/3v+1)=-73/18-2v | | -6=-3m-21 | | 8=3(y-2)+4y | | 4x+1=8x-3=4x+5 | | 2(x+8)-4=-32 | | (-1/2)yy=12 | | 5(w-5)=-7w-13 | | 3(2x÷11x)=3x÷12 | | 2w+(2w+1)=42 | | y+6=-2| | | 35=6x-4x | | 999999999999999999999999999999999999999999999999999999999999999999999999999999999999999x9999999999999999999=9999999999999 | | 2(5x-5)+6x+50=180 | | 10x+2x-6=12x | | 1=14000n(n+1) | | (5n+1)/8=(3n-1)/4 | | 9=12-(6x+7)+5x | | 2x+5=-3+2x | | 15+6h=45 | | 3x-5x+12=8x+2x | | -16=-7v+3v | | X×x+15=x+45×x+25×x+40 | | -25=-5+10x | | 2-3/2k=1/8k+9 |